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• Outline
– Basics

• Nyquist, Quantum effects, limits
• Noise Temperature Definition
• Microwave Networks & Noise

– Noise-Temperature Measurement
• Total-power radiometer

– general
– simple, idealized case
– not so simple case

• Uncertainties
• Adapters

• Outline (cont’d)
– Noise Figure & Parameters

• Noise Figure defined
• Simple, idealized NF measurement
• Noise parameters
• Wave representation of noise matrix
• Measuring noise parameters
• Uncertainties

– Noise Standards & Sources
• Not covered here

– References
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I.  BASICS

• Derivation:
– Electr. Eng. [1-4]
– Physics, Stat. Mech. [4]

• For passive device, at physical temperature
T, with small )f,
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• Limits
– small f :  <Pavail> . kBT )f [1 – hf/(2kBT)]

                             . kBT )f
– large f :  ÿ 0
– knee occurs around f(GHz) . 20 T(K)

• Quantum effect
– h/kB = 0.04799 K/GHz
– So at 290 K, 1 % effect at 116 GHz

     at 100 K, 1 % effect at 40 GHz
     at 100 K, 0.1 % effect at 4 GHz
     30 K @ 40 GHz ÿ 6.4%, 0.26 dB

NOISE TEMPERATURE

• What about active devices?  Can we define
a noise temperature?

• Several different definitions used:
– delivered vs. available power
– with or without quantum effect

i.e., does Tnoise - Pavail or is Tnoise the physical
temperature that would result in that value of
Pavail ?
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• IEEE [5]: “(1)(general)(at a pair of
terminals and at a specifice frequency) the
temperature of a passive system having an
available noise power per unit bandwidth
equal to that of the actual terminals.”
and
“(4)(at a port and at a selected frequency) A
temperature given by the exchangeable
noise-power density divided by
Boltzmann’s constant, at a given port and at
a stated frequency.”

• We (I) will use second definition,
noise temp /available noise-power density
divided by Boltzmann’s constant.

• It is the common choice in international
comparisons [6] and elsewhere [7].

• It is much more convenient for amplifier
noise considerations (at least for careful
ones)
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• So  Pavail = kBTnoise)f
• And for passive devices,

• Convenient to define “Excess noise ratio”
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No matter what definition of noise temperature you choose,
it is helpful to state your choice.
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MICROWAVE NETWORKS
& NOISE  [8,9]

• Assume lossless lines, single mode.
• Travelling-wave amplitudes a, b.
• Normalized such that Pdel = |a|2–|b|2

• May be a little careless about B; assume
that it’s 1Hz where needed.
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• Describe (linear) one-ports by

• And (linear) two-ports by

G
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• Available power:

• Delivered power:
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• Mismatch factor:  M1 /p1,del/p1,avail

• Efficiency:  021 / p2,del/p1,del
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• For passive devices:

• Practical point: large vs. small T1

1 2

G Ta

T2T1

p avail
2 ' "21p avail

1 % f0(Ta)

T2 ' "21 T1 % f(Ta)

Say T1 = Ta , then T2  must = Ta , so

T 2 ' T a ' "21 Ta % f(T a)

f(Ta) ' (1 ! "21)T a

and therefore

T 2 ' "21 T 1 % (1 ! "21)T a

II.  NOISE-TEMPERATURE
MEASUREMENT

• Two principal types of radiometer for noise-
temperature measurements are Dicke radiometer
and total-power radiometer [10].

• Total-power radiometer is most common for lab
use, & that’s what we’ll discuss.

Total-Power Radiometer [10-12]
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• Simple case: symmetric, matched (all '’s = 0)

Cold

Hot

DUT

Linear P

Matched 6 pdel = pavail

Linear 6 P = a + bpdel = a + bpavail

2 standards (h,c) determine a, b:
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• Not-so-simple case (unmatched, asymmetric)
Three complications:
–    pdel = Mpavail

–    pdel,rad = 0 pdel,G , and 0x Ö 0h Ö 0c

–    a, b = a('), b(')

– Handle first two by measuring and correcting.
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– For dependence of a and b on ', have three
choices:

• tune so that 'h = 'c = 'x (very narrow frequency
range, need special standards)

• characterize dependence on ' (broadband, but a lot
of work, and difficult to get good accuracy)

• isolate (easy, accurate, but limits frequency range &
difficult at low frequency)

– If isolate, a and b are (almost) independent of
the source, and
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• Simple case (matched):
M h? h

M x? x

typically around 1 %

about 1 or 2%
small uncert,
but linearity 
concern

Uncert “should”
be negligible
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+=

Uncertainties

M h? h

M x? x

• Simple-case uncerts (cont’d)
– drift: temperature stability/control important
– connector variability: hard to do much better

than 0.1%, easy to do considerably worse.
– )a, )b:  depends on details of system, can

make a crude estimate:

Trev - Te ,  *)' *- 0.05 or 0.1

So ) Tin - 0.05 or 0.1H Te
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• linearity: serious concern if Tx very different
from standards, less (but some) worry if Tx
near temperature of a standard.
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• Uncertainties (more careful case)
      (Numbers are for NIST case) [13,14]
– Radiometer equation:

– Ambient standard:
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– “Other” standard:

– Path asymmetry: (zero if connect to same port)

– Mismatch:
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– Connectors:

– Other:  Nonlinearity, imperfect isolation, power
ratio measurement, and broadband
mismatch/frequency offset all lead to small
(<0.1%) uncertainties for Tx around 10 000 K
(for us/NIST).
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• uT(Type-B)/T  as a function of T
Standard relative uncertainty (1F)
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• Measure T at 2, want T at 1.

Adapters

Radiometer
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III.  NOISE FIGURE &
PARAMETERS

• Want a measure of how much noise an
amplifier adds to a signal or how much it
degrades the S/N ratio.

Noise Figure Defined

• Define Noise Figure, IEEE [15]:
(at a given frequency) the ratio of total
output noise power per unit bandwidth to
the portion of the output noise power which
is due to the input noise, evaluated for the
case where the input noise power is kB T0 ,
where T0 = 290 K.

• Noise figure & signal to noise ratio[16]:
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• Effective input noise temperature:

Note:  G, F, Te all depend on 'source.

Sin , Nin G
Nout = G Nin + Namp = G kBTin + Namp

Sout = G S in 

define   Namp / GkBTe

So   Nout = GkB(Tin + Te)
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• But that’s just for one value of 'source.  Want
to determine F or Te for any 'source.  So
parameterize dependence on 'source.

• Several parameterizations in use; most
common are variants of the IEEE [17] form.
Particular IEEE form we use is [18]

T e ' T e,min % t
*GG ! Gopt*

2

(1 ! *GG*
2) *1 % Gopt*

2

Noise Parameters

0

4
Z

nR
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• For microwave radiometry, wave
representation [18-23] provides more
flexibility.

• Linear 2-port:

S

21

a1b1 a2 b2

b1

b2

'
S11 S12

S21 S22

a1

a2

%
b̂1

b̂2

Wave Representation of Noise Matrix
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• Noise matrix is defined by

• Four real noise parameters:

<*b̂1*
2>, <*b̂2*

2>, <b̂1 b̂
(

2 >
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or *ˆˆˆ
jbibijN = for intrinsic noise matrix

• Output noise temperature T2
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• So for Te we have

• Whereas IEEE parameterization is

T e '
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• We can relate the two:
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2 X2 ! 2 Re[(1 % S11)
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• Going the other way,

X1 ' Te ,min (*S11*
2 ! 1) %

t *1 ! S11 Gopt*
2

*1 % Gopt*
2

,

X2 ' Te,min %
t *Gopt *

2

*1 % Gopt*
2

,

X12 ' S 11 Te,min !
t G

(
opt (1 ! S11Gopt)

*1 % Gopt*
2

.

note bound implied by X1 > 0.

• Many different methods [18,20,22,24-34],
most based on IEEE parameterization.

• Basic idea of (almost) all methods is to
– present amplifier (or device) with a variety of

different input terminations (' & T),
– have an equation for the “output” in terms of

the noise parameters and known quantities
('’s,  T’s, S-parameters),

– determine noise parameters by a fit to the
measured output.

– Need good distrib. of '’s in complex plane.

Measuring Noise Parameters
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• “Output” can be
– Noise figure [24]

– Power [25]

– Note: output ', matching, available power, etc.

Tuner
Noise
Source

Th , Tc DUT

NF

DUT

P
Many ',
all at Tamb

Th

• Noise-matrix approach [22,23,30] to
measuring noise parameters:
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• Supplemental measurement (noise matrix)
[27,31]
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• Noise-Parameter Uncertainties
– Monte Carlo method is probably the most

practical [26,35-38]
– Some general approximate features [38]:

• Uncerts in G and Tmin (& Fmin) are dominated by
uncert in Th.  0.1 dB uncert in Th Y -0.1 dB uncert
in G and Fmin.

• Uncerts in 'opt are dominated by uncerts in 'G’s.
Uncert in Re or Im 'opt is - 3 or 4H uncert in Re or
Im 'G (for 13 terminations).

• t is sensitive to just about everything.
• Tamb is not a major factor, because it is much better

known than Th.  Note, however, that it could affect
Th or the amplifier properties.
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